ENZYMOLOGY Presented by Dr. A.H.Mahdavi ## **Enzyme Kinetics** - the <u>rate</u> of the reaction - how it changes in response to changes in experimental parameters Maud Menten, 1879-1960 - **kcat**, to describe the limiting rate of any enzyme-catalyzed reaction at saturation. "turnover number" - kcat/Km "specificity constant" | Enzyme | Substrate | K _m (mм | |------------------------|------------------------|--------------------| | Hexokinase (brain) | ATP | 0.4 | | | p-Glucose | 0.05 | | | p-Fructose | 1.5 | | Carbonic anhydrase | HCO ₃ | 26 | | Chymotrypsin | Glycyltyrosinylglycine | 108 | | | N-Benzoyltyrosinamide | 2.5 | | β -Galactosidase | D-Lactose | 4.0 | | Threonine dehydratase | L-Threonine | 5.0 | | -
nzyme | Substrate | $k_{\rm cat}({\rm s}^{-1})$ | |--------------------------|-------------------------------|-----------------------------| | Catalase | H ₂ O ₂ | 40,000,000 | | Carbonic anhydrase | HCO_3^- | 400,000 | | Acetylcholinesterase | Acetylcholine | 14,000 | | β-Lactamase | Benzylpenicillin | 2,000 | | Fumarase | Fumarate | 800 | | RecA protein (an ATPase) | ATP | 0.4 | | TABLE 6-8 Enzymes for Which k_{cat}/K_m Is Close to the Diffusion-Controlled Limit (10 ⁸ to 10 ⁹ m ⁻¹ s ⁻¹) | | | | | | | |--|-------------------------------|-------------------------------------|-----------------------|--|--|--| | Enzyme | Substrate | k _{cat} (s ⁻¹) | К _т
(м) | $k_{\rm cat}/K_{\rm m} \ ({\rm M}^{-1}{\rm S}^{-1})$ | | | | Acetylcholinesterase | Acetylcholine | 1.4×10^{4} | 9×10^{-5} | 1.6 × 10 ⁵ | | | | Carbonic anhydrase | CO ₂ | 1×10^{6} | 1.2×10^{-2} | 8.3 × 10 | | | | | HCO ₃ | 4×10^{5} | 2.6×10^{-2} | 1.5 × 10 | | | | Catalase | H ₂ O ₂ | 4×10^{7} | 1.1×10^{0} | 4 × 10 | | | | Crotonase | Crotonyl-CoA | 5.7×10^{3} | 2×10^{-5} | 2.8×10^{1} | | | | Fumarase | Fumarate | 8×10^{2} | 5×10^{-6} | 1.6×10^{1} | | | | | Malate | 9×10^{2} | 2.5×10^{-5} | 3.6×10 | | | | β-Lactamase | Benzylpenicillin | 2.0×10^{3} | 2×10^{-5} | 1×10^{1} | | | group to the enzyme (to form the covalently modified E'), which is subsequently transferred to substrate 2. This is called a Ping-Pong or double-displacement mechanism. (b) Enzyme reaction in which no ternary complex is formed $$E+S_1 \stackrel{}{\displaystyle \longleftrightarrow} ES_1 \stackrel{}{\displaystyle \longleftrightarrow} E'P_1 \stackrel{f_1}{\displaystyle \longleftrightarrow} E' \stackrel{S_2}{\displaystyle \longleftrightarrow} E'S_2 \stackrel{}{\displaystyle \longleftrightarrow} E+P_2$$