

ENZYMOLOGY

Presented by Dr. A.H.Mahdavi

Enzyme Kinetics

- the <u>rate</u> of the reaction
- how it changes in response to changes in experimental parameters

Maud Menten, 1879-1960

- **kcat**, to describe the limiting rate of any enzyme-catalyzed reaction at saturation. "turnover number"
- kcat/Km "specificity constant"

Enzyme	Substrate	K _m (mм
Hexokinase (brain)	ATP	0.4
	p-Glucose	0.05
	p-Fructose	1.5
Carbonic anhydrase	HCO ₃	26
Chymotrypsin	Glycyltyrosinylglycine	108
	N-Benzoyltyrosinamide	2.5
β -Galactosidase	D-Lactose	4.0
Threonine dehydratase	L-Threonine	5.0

- nzyme	Substrate	$k_{\rm cat}({\rm s}^{-1})$
Catalase	H ₂ O ₂	40,000,000
Carbonic anhydrase	HCO_3^-	400,000
Acetylcholinesterase	Acetylcholine	14,000
β-Lactamase	Benzylpenicillin	2,000
Fumarase	Fumarate	800
RecA protein (an ATPase)	ATP	0.4

TABLE 6-8 Enzymes for Which k_{cat}/K_m Is Close to the Diffusion-Controlled Limit (10 ⁸ to 10 ⁹ m ⁻¹ s ⁻¹)						
Enzyme	Substrate	k _{cat} (s ⁻¹)	К _т (м)	$k_{\rm cat}/K_{\rm m} \ ({\rm M}^{-1}{\rm S}^{-1})$		
Acetylcholinesterase	Acetylcholine	1.4×10^{4}	9×10^{-5}	1.6 × 10 ⁵		
Carbonic anhydrase	CO ₂	1×10^{6}	1.2×10^{-2}	8.3 × 10		
	HCO ₃	4×10^{5}	2.6×10^{-2}	1.5 × 10		
Catalase	H ₂ O ₂	4×10^{7}	1.1×10^{0}	4 × 10		
Crotonase	Crotonyl-CoA	5.7×10^{3}	2×10^{-5}	2.8×10^{1}		
Fumarase	Fumarate	8×10^{2}	5×10^{-6}	1.6×10^{1}		
	Malate	9×10^{2}	2.5×10^{-5}	3.6×10		
β-Lactamase	Benzylpenicillin	2.0×10^{3}	2×10^{-5}	1×10^{1}		

group to the enzyme (to form the covalently modified E'), which is subsequently transferred to substrate 2. This is called

a Ping-Pong or double-displacement mechanism.

(b) Enzyme reaction in which no ternary complex is formed

$$E+S_1 \stackrel{}{\displaystyle \longleftrightarrow} ES_1 \stackrel{}{\displaystyle \longleftrightarrow} E'P_1 \stackrel{f_1}{\displaystyle \longleftrightarrow} E' \stackrel{S_2}{\displaystyle \longleftrightarrow} E'S_2 \stackrel{}{\displaystyle \longleftrightarrow} E+P_2$$